Enhanced Data Mining and Visualization of Sensory-Graph-Modeled Datasets through Summarization

Author:

Hashmi Syed Jalaluddin1ORCID,Alabdullah Bayan2,Al Mudawi Naif3ORCID,Algarni Asaad4,Jalal Ahmad5,Liu Hui6ORCID

Affiliation:

1. School of Computing, National University of Computer and Emerging Science, Islamabad 44000, Pakistan

2. Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

3. Department of Computer Science, College of Computer Science and Information System, Najran University, Najran 55461, Saudi Arabia

4. Department of Computer Sciences, Faculty of Computing and Information Technology, Northern Border University, Rafha 91911, Saudi Arabia

5. Faculty of Computing and AI, Air University, E-9, Islamabad 44000, Pakistan

6. Cognitive Systems Lab, University of Bremen, 28359 Bremen, Germany

Abstract

The acquisition, processing, mining, and visualization of sensory data for knowledge discovery and decision support has recently been a popular area of research and exploration. Its usefulness is paramount because of its relationship to the continuous involvement in the improvement of healthcare and other related disciplines. As a result of this, a huge amount of data have been collected and analyzed. These data are made available for the research community in various shapes and formats; their representation and study in the form of graphs or networks is also an area of research which many scholars are focused on. However, the large size of such graph datasets poses challenges in data mining and visualization. For example, knowledge discovery from the Bio–Mouse–Gene dataset, which has over 43 thousand nodes and 14.5 million edges, is a non-trivial job. In this regard, summarizing the large graphs provided is a useful alternative. Graph summarization aims to provide the efficient analysis of such complex and large-sized data; hence, it is a beneficial approach. During summarization, all the nodes that have similar structural properties are merged together. In doing so, traditional methods often overlook the importance of personalizing the summary, which would be helpful in highlighting certain targeted nodes. Personalized or context-specific scenarios require a more tailored approach for accurately capturing distinct patterns and trends. Hence, the concept of personalized graph summarization aims to acquire a concise depiction of the graph, emphasizing connections that are closer in proximity to a specific set of given target nodes. In this paper, we present a faster algorithm for the personalized graph summarization (PGS) problem, named IPGS; this has been designed to facilitate enhanced and effective data mining and visualization of datasets from various domains, including biosensors. Our objective is to obtain a similar compression ratio as the one provided by the state-of-the-art PGS algorithm, but in a faster manner. To achieve this, we improve the execution time of the current state-of-the-art approach by using weighted, locality-sensitive hashing, through experiments on eight large publicly available datasets. The experiments demonstrate the effectiveness and scalability of IPGS while providing a similar compression ratio to the state-of-the-art approach. In this way, our research contributes to the study and analysis of sensory datasets through the perspective of graph summarization. We have also presented a detailed study on the Bio–Mouse–Gene dataset, which was conducted to investigate the effectiveness of graph summarization in the domain of biosensors.

Funder

Open Access Initiative of the University of Bremen

DFG via SuUB Bremen

Deanship of Scientific Research at Najran University, under the Research Group Funding program

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3