Target detection and classification via EfficientDet and CNN over unmanned aerial vehicles

Author:

Yusuf Muhammad Ovais,Hanzla Muhammad,Al Mudawi Naif,Sadiq Touseef,Alabdullah Bayan,Rahman Hameedur,Algarni Asaad

Abstract

IntroductionAdvanced traffic monitoring systems face significant challenges in vehicle detection and classification. Conventional methods often require substantial computational resources and struggle to adapt to diverse data collection methods.MethodsThis research introduces an innovative technique for classifying and recognizing vehicles in aerial image sequences. The proposed model encompasses several phases, starting with image enhancement through noise reduction and Contrast Limited Adaptive Histogram Equalization (CLAHE). Following this, contour-based segmentation and Fuzzy C-means segmentation (FCM) are applied to identify foreground objects. Vehicle detection and identification are performed using EfficientDet. For feature extraction, Accelerated KAZE (AKAZE), Oriented FAST and Rotated BRIEF (ORB), and Scale Invariant Feature Transform (SIFT) are utilized. Object classification is achieved through a Convolutional Neural Network (CNN) and ResNet Residual Network.ResultsThe proposed method demonstrates improved performance over previous approaches. Experiments on datasets including Vehicle Aerial Imagery from a Drone (VAID) and Unmanned Aerial Vehicle Intruder Dataset (UAVID) reveal that the model achieves an accuracy of 96.6% on UAVID and 97% on VAID.DiscussionThe results indicate that the proposed model significantly enhances vehicle detection and classification in aerial images, surpassing existing methods and offering notable improvements for traffic monitoring systems.

Publisher

Frontiers Media SA

Reference118 articles.

1. Drone-based human action recognition for surveillance: a multi-feature approach;Abbas,2024

2. Data driven approach to leaf recognition: logistic regression for smart agriculture;Abbasi,2024

3. Body worn sensors for health gaming and e-learning in virtual reality;Afsar;CMC,2022

4. Dynamic adoptive Gaussian mixture model for multi-object detection over natural scenes;Ahmed

5. Robust object recognition with genetic algorithm and composite saliency map;Ahmed

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3