WWFedCBMIR: World-Wide Federated Content-Based Medical Image Retrieval

Author:

Tabatabaei Zahra12ORCID,Wang Yuandou3,Colomer Adrián24ORCID,Oliver Moll Javier1,Zhao Zhiming3ORCID,Naranjo Valery2ORCID

Affiliation:

1. Department of Artificial Intelligence, Tyris Tech S.L., 46021 Valencia, Spain

2. Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, HUMAN-Tech, Universitat Politècnica de València, 46021 Valencia, Spain

3. Multiscale Networked Systems, Universiteit van Amsterdam, 1098XH Amsterdam, The Netherlands

4. ValgrAI—Valencian Graduate School and Research Network for Artificial Intelligence, 46022 Valencia, Spain

Abstract

The paper proposes a federated content-based medical image retrieval (FedCBMIR) tool that utilizes federated learning (FL) to address the challenges of acquiring a diverse medical data set for training CBMIR models. CBMIR is a tool to find the most similar cases in the data set to assist pathologists. Training such a tool necessitates a pool of whole-slide images (WSIs) to train the feature extractor (FE) to extract an optimal embedding vector. The strict regulations surrounding data sharing in hospitals makes it difficult to collect a rich data set. FedCBMIR distributes an unsupervised FE to collaborative centers for training without sharing the data set, resulting in shorter training times and higher performance. FedCBMIR was evaluated by mimicking two experiments, including two clients with two different breast cancer data sets, namely BreaKHis and Camelyon17 (CAM17), and four clients with the BreaKHis data set at four different magnifications. FedCBMIR increases the F1 score (F1S) of each client from 96% to 98.1% in CAM17 and from 95% to 98.4% in BreaKHis, with 11.44 fewer hours in training time. FedCBMIR provides 98%, 96%, 94%, and 97% F1S in the BreaKHis experiment with a generalized model and accomplishes this in 25.53 fewer hours of training.

Funder

European Union’s Horizon 2020 research and innovation

Publisher

MDPI AG

Subject

Bioengineering

Reference38 articles.

1. Current and future burden of breast cancer: Global statistics for 2020 and 2040;Arnold;Breast,2022

2. Zhao, T., Fu, C., Tie, M., Sham, C.W., and Ma, H. (2023). RGSB-UNet: Hybrid Deep Learning Framework for Tumour Segmentation in Digital Pathology Images. Bioengineering, 10.

3. Breast histopathological image analysis using image processing techniques for diagnostic purposes: A methodological review;Rashmi;J. Med. Syst.,2022

4. Analysis of errors in histology by root cause analysis: A pilot study;Morelli;J. Prev. Med. Hyg.,2013

5. World Health Organization (2011). Laboratory Quality Standards and Their Implementation.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3