Advancing Content-Based Histopathological Image Retrieval Pre-Processing: A Comparative Analysis of the Effects of Color Normalization Techniques

Author:

Tabatabaei Zahra12ORCID,Pérez Bueno Fernando3,Colomer Adrián2ORCID,Moll Javier Oliver1,Molina Rafael4,Naranjo Valery2

Affiliation:

1. Department of Artificial Intelligence, Tyris Tech S.L., 46021 Valencia, Spain

2. Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, HUMAN-Tech, Universitat Politècnica de València, 46022 Valencia, Spain

3. Basque Center on Cognition, Brain and Language, 20009 San Sebastián, Spain

4. Department of Ciencias de la Computación e Inteligencia Artificial, Universidad de Granada, 18071 Granada, Spain

Abstract

Content-Based Histopathological Image Retrieval (CBHIR) is a search technique based on the visual content and histopathological features of whole-slide images (WSIs). CBHIR tools assist pathologists to obtain a faster and more accurate cancer diagnosis. Stain variation between hospitals hampers the performance of CBHIR tools. This paper explores the effects of color normalization (CN) in a recently proposed CBHIR approach to tackle this issue. In this paper, three different CN techniques were used on the CAMELYON17 (CAM17) data set, which is a breast cancer data set. CAM17 consists of images taken using different staining protocols and scanners in five hospitals. Our experiments reveal that a proper CN technique, which can transfer the color version into the most similar median values, has a positive impact on the retrieval performance of the proposed CBHIR framework. According to the obtained results, using CN as a pre-processing step can improve the accuracy of the proposed CBHIR framework to 97% (a 14% increase), compared to working with the original images.

Funder

European Union’s Horizon

Ayuda a Primeros Proyectos de Investigación

Vicerrectorado de Investigacion de la Universitat Politecnica de Valencia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3