CNN-Based Pill Image Recognition for Retrieval Systems

Author:

Al-Hussaeni Khalil1ORCID,Karamitsos Ioannis2ORCID,Adewumi Ezekiel2,Amawi Rema M.3ORCID

Affiliation:

1. Computing Sciences, Rochester Institute of Technology, Dubai 341055, United Arab Emirates

2. Graduate and Research, Rochester Institute of Technology, Dubai 341055, United Arab Emirates

3. Science and Liberal Arts, Rochester Institute of Technology, Dubai 341055, United Arab Emirates

Abstract

Medication should be consumed as prescribed with little to zero margins for errors, otherwise consequences could be fatal. Due to the pervasiveness of camera-equipped mobile devices, patients and practitioners can easily take photos of unidentified pills to avert erroneous prescriptions or consumption. This area of research goes under the umbrella of information retrieval and, more specifically, image retrieval or recognition. Several studies have been conducted in the area of image retrieval in order to propose accurate models, i.e., accurately matching an input image with stored ones. Recently, neural networks have been shown to be effective in identifying digital images. This study aims to provide an enhancement to image retrieval in terms of accuracy and efficiency through image segmentation and classification. This paper suggests three neural network (CNN) architectures: two models that are hybrid networks paired with a classification method (CNN+SVM and CNN+kNN) and one ResNet-50 network. We perform various preprocessing steps by using several detection techniques on the selected dataset. We conduct extensive experiments using a real-life dataset obtained from the National Library of Medicine database. The results demonstrate that our proposed model is capable of deriving an accuracy of 90.8%. We also provide a comparison of the above-mentioned three models with some existing methods, and we notice that our proposed CNN+kNN architecture improved the pill image retrieval accuracy by 10% compared to existing models.

Funder

Rochester Institute of Technology—Dubai

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3