A Mechanistic Study of Methanol Steam Reforming on Ni2P Catalyst

Author:

Almithn AbdulrahmanORCID,Alhulaybi Zaid

Abstract

Methanol steam reforming (MSR) is a promising technology for on-board hydrogen production in fuel cell applications. Although traditional Cu-based catalysts demonstrate high catalytic activity and selectivity towards CO2 relative to CO, which is produced via methanol decomposition, they suffer from poor thermal stability and rapid coke formation. Nickel phosphides have been widely investigated in recent years for many different catalytic reactions owing to their remarkable activity and selectivity, as well as their low cost. In this work, we present a mechanistic study of methanol decomposition and MSR pathways on Ni2P using density functional theory (DFT) calculations. DFT-predicted enthalpic barriers indicate that MSR may compete with methanol decomposition on Ni2P, in contrast to other transition metals (e.g., Pt, Pd, and Co) which primarily decompose methanol into CO. The formaldehyde intermediate (CH2O*) can react with co-adsorbed hydroxyl (OH*) from water dissociation to produce H2COOH* which then undergoes subsequent dehydrogenation steps to produce CO2 via H2COOH*→ HCOOH* → HCOO* → CO2. We also examined the conversion of CO into CO2 via the water–gas shift (WGS) reaction, but we ruled out this pathway because it exhibits high activation barriers on Ni2P. These findings suggest that Ni2P is a promising new catalyst for MSR.

Funder

King Faisal University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3