Advanced convolutional neural network modeling for fuel cell system optimization and efficiency in methane, methanol, and diesel reforming

Author:

Yalcin Sercan1,Yildirim Muhammed2ORCID,Alatas Bilal3ORCID

Affiliation:

1. Computer Engineering, Adiyaman University, Adiyaman, Turkey

2. Computer Engineering, Malatya Turgut Ozal University, Malatya, Turkey

3. Software Engineering, Firat (Euphrates) University, Elazig, Turkey

Abstract

Fuel cell systems (FCSs) have been widely used for niche applications in the market. Furthermore, the research community has worked on using FCSs for different sectors, such as transportation, stationary power generation, marine and maritime, aerospace, military and defense, telecommunications, and material handling. The reformation of various fuels, such as methanol, methane, and diesel can be utilized to generate hydrogen for FCSs. This study introduces an advanced convolutional neural network (CNN) model designed to accurately forecast hydrogen yield and carbon monoxide volume percentages during the reformation processes of methane, methanol, and diesel. Moreover, the CNN model has been tailored to accurately estimate methane conversion rates in methane reforming processes. The proposed CNN models are created by combining the 3D-CNN and 2D-CNN models. The Keras Tuner approach in Python is employed in this study to find the ideal values for different hyperparameters such as batch size, learning rate, time steps, and optimization method selection. The accuracy of the proposed CNN model is evaluated by using the root mean square error (RMSE), mean absolute percentage error (MAE), mean absolute error (MAE), and R2. The results indicate that the proposed CNN model is better than other artificial intelligence (AI) techniques and standard CNN for performance estimation of reforming processes of methane, diesel, and methanol. The results also show that the suggested CNN model can be used to accurately estimate critical output parameters for reforming various fuels. The proposed method performs better in CO prediction than the support vector machine (SVM), with an R2 of 0.9989 against 0.9827. This novel methodology not only improves performance estimation for reforming processes but also provides a valuable tool for accurately estimating output parameters across various fuel types.

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3