Phosphorus Modification of Iron: Mechanistic Insights into Ammonia Synthesis on Fe2P Catalyst

Author:

Almithn Abdulrahman1ORCID

Affiliation:

1. Department of Chemical Engineering, College of Engineering, King Faisal University, Al Ahsa 31982, Saudi Arabia

Abstract

Ammonia (NH3) is a critical chemical for fertilizer production and a potential future energy carrier within a sustainable hydrogen economy. The industrial Haber–Bosch process, though effective, operates under harsh conditions due to the high thermodynamic stability of the nitrogen molecule (N2). This motivates the search for alternative catalysts that facilitate ammonia synthesis at milder temperatures and pressures. Theoretical and experimental studies suggest that circumventing the trade-off between N–N activation and subsequent NHx hydrogenation, governed by the Brønsted–Evans–Polanyi (BEP) relationship, is key to achieving this goal. Recent studies indicate metal phosphides as promising catalyst materials. In this work, a comprehensive density functional theory (DFT) study comparing the mechanisms and potential reaction pathways for ammonia synthesis on Fe(110) and Fe2P(001) is presented. The results reveal substantial differences in the adsorption strengths of NHx intermediates, with Fe2P(001) exhibiting weaker binding compared to Fe(110). For N–N bond cleavage, multiple competing pathways become viable on Fe2P(001), including routes involving the pre-hydrogenation of adsorbed N2 (e.g., through *NNH*). Analysis of DFT-derived turnover rates as a function of hydrogen pressure (H2) highlights the increased importance of these hydrogenated intermediates on Fe2P(001) compared to Fe(110) where direct N2 dissociation dominates. These findings suggest that phosphorus incorporation modifies the ammonia synthesis mechanism, offering alternative pathways that may circumvent the limitations of traditional transition metal catalysts. This work provides theoretical insights for the rational design of Fe-based catalysts and motivates further exploration of phosphide-based materials for sustainable ammonia production.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Reference50 articles.

1. A Roadmap to the Ammonia Economy;MacFarlane;Joule,2020

2. Smil, V. (2004). Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production, MIT Press.

3. Towards Sustainable Agriculture: Fossil-Free Ammonia;Pfromm;J. Renew. Sustain. Energy,2017

4. Kinetics and Mechanism of Ammonia Synthesis;Boudart;Catal. Rev.,1981

5. Ammonia Synthesis from First-Principles Calculations;Honkala;Science,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3