Exploration for Object Mapping Guided by Environmental Semantics using UAVs

Author:

Ashour ReemORCID,Taha TarekORCID,Dias Jorge Manuel MirandaORCID,Seneviratne Lakmal,Almoosa NawafORCID

Abstract

This paper presents a strategy to autonomously explore unknown indoor environments, focusing on 3D mapping of the environment and performing grid level semantic labeling to identify all available objects. Unlike conventional exploration techniques that utilize geometric heuristics and information gain theory on an occupancy grid map, the work presented in this paper considers semantic information, such as the class of objects, in order to gear the exploration towards environmental segmentation and object labeling. The proposed approach utilizes deep learning to map 2D semantically segmented images into 3D semantic point clouds that encapsulate both occupancy and semantic annotations. A next-best-view exploration algorithm is employed to iteratively explore and label all the objects in the environment using a novel utility function that balances exploration and semantic object labeling. The proposed strategy was evaluated in a realistically simulated indoor environment, and results were benchmarked against other exploration strategies.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference52 articles.

1. Help from the sky: Leveraging UAVs for disaster management;Erdelj;IEEE Pervasive Comput.,2017

2. A surveillance system using small unmanned aerial vehicle (UAV) related technologies;Wada;NEC Tech. J.,2015

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Star-Searcher: A Complete and Efficient Aerial System for Autonomous Target Search in Complex Unknown Environments;IEEE Robotics and Automation Letters;2024-05

2. Semantics-Aware Receding Horizon Planner for Object-Centric Active Mapping;IEEE Robotics and Automation Letters;2024-04

3. Finding Things in the Unknown: Semantic Object-Centric Exploration with an MAV;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

4. ASEP: An Autonomous Semantic Exploration Planner With Object Labeling;IEEE Access;2023

5. Applications of UAVs in Search and Rescue;Unmanned Aerial Vehicles Applications: Challenges and Trends;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3