LIRNet: A Lightweight Inception Residual Convolutional Network for Solar Panel Defect Classification

Author:

Lee Shih-Hsiung1ORCID,Yan Ling-Cheng2ORCID,Yang Chu-Sing2

Affiliation:

1. Department of Intelligent Commerce, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan

2. Institute of Computer and Communication Engineering, National Cheng Kung University, Tainan 701, Taiwan

Abstract

Solar-cell panels use sunlight as a source of energy to generate electricity. However, the performances of solar panels decline when they degrade, owing to defects. Some common defects in solar-cell panels include hot spots, cracking, and dust. Hence, it is important to efficiently detect defects in solar-cell panels and repair them. In this study, we propose a lightweight inception residual convolutional network (LIRNet) to detect defects in solar-cell panels. LIRNet is a neural network model that utilizes deep learning techniques. To achieve high model performance on solar panels, including high fault detection accuracy and processing speed, LIRNet draws on hierarchical learning, which is a two-phase solar-panel-defect classification method. The first phase is the data-preprocessing stage. We use the K-means clustering algorithm to refine the dataset. The second phase is the training of the model. We designed a powerful and lightweight neural network model to enhance accuracy and speed up the training time. In the experiment, LIRNet improved the accuracy by approximately 8% and performed ten times faster than EfficientNet.

Funder

National Science and Technology Council of Taiwan

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A feature space class balancing strategy-based fault classification method in solar photovoltaic modules;Engineering Applications of Artificial Intelligence;2024-10

2. Classification of Solar Cells EL Images with Different Busbars Via Deep Learning Models;Sakarya University Journal of Computer and Information Sciences;2024-08-31

3. An innovative transformer neural network for fault detection and classification for photovoltaic modules;Energy Conversion and Management;2024-08

4. Ssd-kdgan: a lightweight SSD target detection method based on knowledge distillation and generative adversarial networks;The Journal of Supercomputing;2024-07-19

5. IoT based Fault Detection in Dusty Solar Panels using Modified DenseNet121;2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT);2024-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3