Building the Sun4Cast System: Improvements in Solar Power Forecasting

Author:

Haupt Sue Ellen1,Kosović Branko1,Jensen Tara1,Lazo Jeffrey K.1,Lee Jared A.1,Jiménez Pedro A.1,Cowie James1,Wiener Gerry1,McCandless Tyler C.1,Rogers Matthew2,Miller Steven2,Sengupta Manajit3,Xie Yu3,Hinkelman Laura4,Kalb Paul5,Heiser John5

Affiliation:

1. National Center for Atmospheric Research/Research Applications Laboratory, Boulder, Colorado

2. Cooperative Institute for Research of the Atmosphere, Colorado State University, Fort Collins, Colorado

3. National Renewable Energy Laboratory, Golden, Colorado

4. University of Washington, Seattle, Washington

5. Brookhaven National Laboratory, Upton, New York

Abstract

Abstract As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from the public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers. The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, which forms the basis of the system beyond about 6 h. For short-range (0–6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short- to midterm irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. This paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3