Classification of Solar Cells EL Images with Different Busbars Via Deep Learning Models

Author:

Aktaş Miktat1ORCID,Doğan Ferdi2ORCID,Türkoğlu İbrahim3ORCID

Affiliation:

1. GTC GÜNEŞ SANAYİ VE TİCARET AŞ

2. ADIYAMAN ÜNİVERSİTESİ

3. FIRAT ÜNİVERSİTESİ

Abstract

Electricity generation from renewable energy sources such as solar energy has come to the forefront in the last decade. The solar energy cell is an indispensable part of the solar energy ecosystem of solar panels, and defective cells cause financial losses in energy production. Experienced experts are needed to detect defects on solar cells. Autonomous systems are important to accelerate the process. Classical image processing techniques are used to manually detect defects on cells. To use these techniques, many parameters are need to be entered into EL imaging software. However, in this study, these processes were carried out automatically without the need for external intervention. False detection/classification may occur during the processes performed by EL imaging devices due to weakness of the operator experience or EL imaging software. It is aimed to use automatic image processing and then deep learning techniques to achieve faster and higher performance than the results obtained from EL imaging devices using classic image processing techniques. AI algorithm and deep learning models can be an important solution. In this study, two AI algorithm and 10 different deep learning models were used to classify solar cells. EL images of defective and normal solar cells with 4 and 5 busbars were used in the study. The dataset, includes 9360 images of solar cells, 4680 of which are defective and 4680 are normal. Performance evaluation of the models made according to the confusion matrix. According to the results, Mobilenet-v2 and VGG-19 achieved the highest validation accuracy rate of 99.68%. According to F1-score, Mobilenetv2 achieved the highest performance of 99.73%. It has been shown that the Mobilenet-v2 is slightly more successful than other models in terms of validation and F1-score. The results show that trained DL models can be used as an inspection method in the production line of solar panels and cells.

Funder

GTC GUNES SANAYI VE TICARET AS

Publisher

Sakarya University Journal of Computer and Information Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3