Comparison of deep learning models in terms of multiple object detection on satellite images

Author:

Doğan Ferdi, ,Turkoğlu Ibrahim,

Abstract

The images obtained by remote sensing contain important data about ground surface. It is an important issue to detect objects on the ground surface with these images. Deep learning models are known to give better results in studies on object detection. However, the superiority of the deep learning models over each other is unknown. For this reason, it should be clarified which model is superior in terms of object detection and which model should be used in studies. In this study, it was aimed to reveal the superiorities of deep learning models by comparing their performance in detecting multiple objects. By using 11 deep learning models that are frequently encountered in the literature, the application of detecting objects of 14 classes in the DOTA dataset were made. 49,053 objects in 888 images were used for training by using AlexNet, Vgg16, Vgg19, GoogleNet, SequezeeNet, Resnet18, Resnet50, Resnet101, Inceptionresnetv2, inceptionv3, DenseNet201 models. After the training, 13,772 objects consisting of 14 classes in 277 images were used for testing with RCNN, which is one of the object detection methods. The performance of each algorithm in 14 classes has been demonstrated by using Average Precision (AP) and Mean Average Precision (mAP) to measure the performance of the models from their metrics. In a particular class of each deep learning model, difference in performance was observed The model with the highest performance varies in each class. In the application, the most successful average mAP value of 14 classes was Vgg16 with 24.64, while the lowest was InceptionResnetV2 with 11.78. In this article, the success of deep learning models in detecting multiple objects has been demonstrated practically and it is thought to be an important resource for researchers who will study on this subject.

Publisher

Journal of Engineering Research

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification of Solar Cells EL Images with Different Busbars Via Deep Learning Models;Sakarya University Journal of Computer and Information Sciences;2024-08-31

2. Learning deep feature fusion for traffic light detection;Journal of Engineering Research;2023-09

3. Learning deep feature fusion for traffic light detection;Journal of Engineering Research;2023-04

4. Light-Weight Deep Learning Framework for Automated Remote Sensing Images Classification;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3