Abstract
In mathematics education, technology offers many opportunities to enrich curricular contents. Plane symmetries is a topic often skipped by primary teachers. However, it is important and may be worked in attractive ways in dynamic geometry software environments. In any regular classroom there are students with different levels of mathematical attainment, some needing easy tasks while others, particularly mathematically-gifted students, need challenging problems. We present a teaching unit for plane symmetries, adequate for upper primary school grades, implemented in a fully interactive electronic book, with most activities solved in GeoGebra apps. The book allows student to choose which itinerary to follow and attention is paid to different levels of students’ mathematical attainment. The research objective of the paper is to make a networked analysis of the structure and contents of the teaching unit based on the Van Hiele levels of mathematical reasoning and the levels of cognitive demand in mathematical problem solving. The analysis shows the interest of networking both theories, the suitability of the teaching unit, as the Van Hiele levels and the cognitive demand of the activities increases, and its usefulness to fit the needs of each student, from low attainers to mathematically-gifted students.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference82 articles.
1. The Learning and Teaching of Geometry;Sinclair,2017
2. Early Geometrical Thinking in the Environment of Patterns, Mosaics and Isometries;Swoboda,2016
3. Recent research on geometry education: an ICME-13 survey team report
4. Technology for Learning Mathematics;Roschelle,2017
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献