A Comparison of Uric Acid Optical Detection Using as Sensitive Materials an Amino-Substituted Porphyrin and Its Nanomaterials with CuNPs, PtNPs and Pt@CuNPs

Author:

Epuran Camelia,Fratilescu Ion,Anghel Diana,Birdeanu Mihaela,Orha Corina,Fagadar-Cosma EugeniaORCID

Abstract

Hybrid nanomaterials consisting in 5,10,15,20-tetrakis(4-amino-phenyl)-porphyrin (TAmPP) and copper nanoparticles (CuNPs), platinum nanoparticles (PtNPs), or both types (Pt@CuNPs) were obtained and tested for their capacity to optically detect uric acid from solutions. The introduction of diverse metal nanoparticles into the hybrid material proved their capacity to improve the detection range. The detection was monitored by using UV-Vis spectrophotometry, and differences between morphology of the materials were performed using atomic force microscopy (AFM). The hybrid material formed between porphyrin and PtNPs hasthe best and most stable response for uric acid detection in the range of 6.1958 × 10−6–1.5763 × 10−5 M, even in the presence of very high concentrations of the interference species present in human environment.

Funder

Romanian Academy

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3