Nanomaterials Based on 2,7,12,17-Tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine Exhibiting Bifunctional Sensitivity for Monitoring Chloramphenicol and Co2+

Author:

Fringu Ionela1,Anghel Diana1,Fratilescu Ion1,Epuran Camelia1,Birdeanu Mihaela2ORCID,Fagadar-Cosma Eugenia1ORCID

Affiliation:

1. Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Avenue 24, 300223 Timisoara, Romania

2. National Institute for Research and Development in Electrochemistry and Condensed Matter, P. Andronescu Street, No. 1, 300224 Timisoara, Romania

Abstract

Monitoring antibiotic retention in human body fluids after treatment and controlling heavy metal content in water are important requirements for a healthy society. Therefore, the approach proposed in this study is based on developing new optical sensors using porphyrin or its bifunctional hybrid materials made with AuNPs to accomplish the accurate detection of chloramphenicol and cobalt. To produce the new optical chloramphenicol sensors, 2,7,12,17-tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine (TBAP) was used, both alone in an acid medium and as a hybrid material with AuNPs in a water–DMSO acidified environment. The same hybrid material in the unchanged water–DMSO medium was the sensing material used for Co2+ monitoring. The best results of the hybrid materials were explained by the synergistic effects between the TBAP azaporphyrin and AuNPs. Chloramphenicol was accurately detected in the range of concentrations between 3.58 × 10−6 M and 3.37 × 10−5 M, and the same hybrid material quantified Co2+ in the concentration range of 8.92 × 10−5 M–1.77 × 10−4 M. In addition, we proved that AuNPs can be used for the detection of azaporphyrin (from 2.66 × 10−5 M to 3.29 × 10−4 M), making them a useful tool to monitor porphyrin retention after cancer imaging procedures or in porphyria disease. In conclusion, we harnessed the multifunctionality of this azaporphyrin and of its newly obtained AuNP plasmonic hybrids to detect chloramphenicol and Co2+ quickly, simply, and with high precision.

Funder

Romanian Academy

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3