UAV Remote Sensing Estimation of Rice Yield Based on Adaptive Spectral Endmembers and Bilinear Mixing Model

Author:

Yuan Ningge,Gong Yan,Fang Shenghui,Liu Yating,Duan Bo,Yang KailiORCID,Wu Xianting,Zhu Renshan

Abstract

The accurate estimation of rice yield using remote sensing (RS) technology is crucially important for agricultural decision-making. The rice yield estimation model based on the vegetation index (VI) is commonly used when working with RS methods, however, it is affected by irrelevant organs and background especially at heading stage. The spectral mixture analysis (SMA) can quantitatively obtain the abundance information and mitigate the impacts. Furthermore, according to the spectral variability and information complexity caused by the rice cropping system and canopy characteristics of reflection and scattering, in this study, the multi-endmember extraction by the pure pixel index (PPI) and the nonlinear unmixing method based on the bandwise generalized bilinear mixing model (NU-BGBM) were applied for SMA, and the VIE (VIs recalculated from endmember spectra) was integrated with abundance data to establish the yield estimation model at heading stage. In two paddy fields of different cultivation settings, multispectral images were collected by an unmanned aerial vehicle (UAV) at booting and heading stage. The correlation of several widely-used VIs and rice yield was tested and weaker at heading stage. In order to improve the yield estimation accuracy of rice at heading stage, the VIE and foreground abundances from SMA were combined to develop a linear yield estimation model. The results showed that VIE incorporated with abundances exhibited a better estimation ability than VI alone or the product of VI and abundances. In addition, when the structural difference of plants was obvious, the addition of the product of VIF (VIs recalculated from bilinear endmember spectra) and the corresponding bilinear abundances to the original product of VIE and abundances, enhanced model reliability. VIs using the near-infrared bands improved more significantly with the estimation error below 8.1%. This study verified the validation of the targeted SMA strategy while estimating crop yield by remotely sensed VI, especially for objects with obvious different spectra and complex structures.

Funder

National Natural Science Foundation of China

Key R & D projects in Hubei Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3