Inversion of Cotton Soil and Plant Analytical Development Based on Unmanned Aerial Vehicle Multispectral Imagery and Mixed Pixel Decomposition

Author:

Tian Bingquan12,Yu Hailin12,Zhang Shuailing12,Wang Xiaoli12,Yang Lei12,Li Jingqian12,Cui Wenhao12,Wang Zesheng23,Lu Liqun24,Lan Yubin1,Zhao Jing12

Affiliation:

1. School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China

2. Shandong-Binzhou Cotton Technology Backyard, Binzhou 256600, China

3. Nongxi Cotton Cooperative, Binzhou 256600, China

4. School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China

Abstract

In order to improve the accuracy of multispectral image inversion of soil and plant analytical development (SPAD) of the cotton canopy, image segmentation methods were utilized to remove the background interference, such as soil and shadow in UAV multispectral images. UAV multispectral images of cotton bud stage canopies at three different heights (30 m, 50 m, and 80 m) were acquired. Four methods, namely vegetation index thresholding (VIT), supervised classification by support vector machine (SVM), spectral mixture analysis (SMA), and multiple endmember spectral mixture analysis (MESMA), were used to segment cotton, soil, and shadows in the multispectral images of cotton. The segmented UAV multispectral images were used to extract the spectral information of the cotton canopy, and eight vegetation indices were calculated to construct the dataset. Partial least squares regression (PLSR), Random forest (FR), and support vector regression (SVR) algorithms were used to construct the inversion model of cotton SPAD. This study analyzed the effects of different image segmentation methods on the extraction accuracy of spectral information and the accuracy of SPAD modeling in the cotton canopy. The results showed that (1) The accuracy of spectral information extraction can be improved by removing background interference such as soil and shadows using four image segmentation methods. The correlation between the vegetation indices calculated from MESMA segmented images and the SPAD of the cotton canopy was improved the most; (2) At three different flight altitudes, the vegetation indices calculated by the MESMA segmentation method were used as the input variable, and the SVR model had the best accuracy in the inversion of cotton SPAD, with R2 of 0.810, 0.778, and 0.697, respectively; (3) At a flight altitude of 80 m, the R2 of the SVR models constructed using vegetation indices calculated from images segmented by VIT, SVM, SMA, and MESMA methods were improved by 2.2%, 5.8%, 13.7%, and 17.9%, respectively, compared to the original images. Therefore, the MESMA mixed pixel decomposition method can effectively remove soil and shadows in multispectral images, especially to provide a reference for improving the inversion accuracy of crop physiological parameters in low-resolution images with more mixed pixels.

Funder

Taishan Industrial Experts Program

Qingdao Industrial Experts Program

Natural Science Foundation Project of Shandong Province

National Key R&D Program of China

Development of Intelligent Seedling Release Machine for Cotton Plant under Membrane with Electrothermal Melt Film

Publisher

MDPI AG

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3