Mapping Rice Paddy Distribution Using Remote Sensing by Coupling Deep Learning with Phenological Characteristics

Author:

Zhu A-XingORCID,Zhao Fang-HeORCID,Pan Hao-Bo,Liu Jun-ZhiORCID

Abstract

Two main approaches are used in mapping rice paddy distribution from remote sensing images: phenological methods or machine learning methods. The phenological methods can map rice paddy distribution in a simple way but with limited accuracy. Machine learning, particularly deep learning, methods that learn the spectral signatures can achieve higher accuracy yet require a large number of field samples. This paper proposed a pheno-deep method to couple the simplicity of the phenological methods and the learning ability of the deep learning methods for mapping rice paddy at high accuracy without the need of field samples. The phenological method was first used to initially delineate the rice paddy for the purpose of creating training samples. These samples were then used to train the deep learning model. The trained deep learning model was applied to map the spatial distribution of rice paddy. The effectiveness of the pheno-deep method was evaluated in Jin’an District, Lu’an City, Anhui Province, China. Results show that the pheno-deep method achieved a high performance with the overall accuracy, the precision, the recall, and AUC (area under curve) being 88.8%, 87.2%, 91.1%, and 94.4%, respectively. The pheno-deep method achieved a much better performance than the phenological alone method and can overcome the noises in the training samples from the phenological method. The overall accuracy of the pheno-deep method is only 2.4% lower than that of the deep learning alone method trained with field samples and this difference is not statistically significant. In addition, the pheno-deep method requires no field sampling, which would be a noteworthy advantage for situations when large training samples are difficult to obtain. This study shows that by combining knowledge-based methods with data-driven methods, it is possible to achieve high mapping accuracy of geographic variables using remote sensing even with little field sampling efforts.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

China Scholarship Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3