MAFF-HRNet: Multi-Attention Feature Fusion HRNet for Building Segmentation in Remote Sensing Images

Author:

Che Zhihao1,Shen Li2ORCID,Huo Lianzhi3,Hu Changmiao3,Wang Yanping1,Lu Yao2,Bi Fukun1

Affiliation:

1. School of Information, North China University of Technology, Beijing 100144, China

2. Beijing Institute of Remote Sensing, Beijing 100011, China

3. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

Abstract

Built-up areas and buildings are two main targets in remote sensing research; consequently, automatic extraction of built-up areas and buildings has attracted extensive attention. This task is usually difficult because of boundary blur, object occlusion, and intra-class inconsistency. In this paper, we propose the multi-attention feature fusion HRNet, MAFF-HRNet, which can retain more detailed features to achieve accurate semantic segmentation. The design of a pyramidal feature attention (PFA) hierarchy enhances the multilevel semantic representation of the model. In addition, we develop a mixed convolutional attention (MCA) block, which increases the capture range of receptive fields and overcomes the problem of intra-class inconsistency. To alleviate interference due to occlusion, a multiscale attention feature aggregation (MAFA) block is also proposed to enhance the restoration of the final prediction map. Our approach was systematically tested on the WHU (Wuhan University) Building Dataset and the Massachusetts Buildings Dataset. Compared with other advanced semantic segmentation models, our model achieved the best IoU results of 91.69% and 68.32%, respectively. To further evaluate the application significance of the proposed model, we migrated a pretrained model based on the World-Cover Dataset training to the Gaofen 16 m dataset for testing. Quantitative and qualitative experiments show that our model can accurately segment buildings and built-up areas from remote sensing images.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3