NPSFF-Net: Enhanced Building Segmentation in Remote Sensing Images via Novel Pseudo-Siamese Feature Fusion

Author:

Guo Ningbo1ORCID,Jiang Mingyong1,Hu Xiaoyu2,Su Zhijuan1ORCID,Zhang Weibin1ORCID,Li Ruibo1ORCID,Luo Jiancheng3

Affiliation:

1. School of Space Information, Space Engineering University, Beijing 101400, China

2. Strategic Assessments and Consultation Institute, Academy of Military Science, Beijing 100000, China

3. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China

Abstract

Building segmentation has extensive research value and application prospects in high-resolution remote sensing image (HRSI) processing. However, complex architectural contexts, varied building morphologies, and non-building occlusions make building segmentation challenging. Compared with traditional methods, deep learning-based methods present certain advantages in terms of accuracy and intelligence. At present, the most popular option is to first apply a single neural network to encode an HRSI, then perform a decoding process through up-sampling or using a transposed convolution operation, and then finally obtain the segmented building image with the help of a loss function. Although effective, this approach not only tends to lead to a loss of detail information, but also fails to fully utilize the contextual features. As an alternative, we propose a novel network called NPSFF-Net. First, using an improved pseudo-Siamese network composed of ResNet-34 and ResNet-50, two sets of deep semantic features of buildings are extracted with the support of transfer learning, and four encoded features at different scales are obtained after fusion. Then, information from the deepest encoded feature is enriched using a feature enhancement module, and the resolutions are recovered via the operations of skip connections and transposed convolutions. Finally, the discriminative features of buildings are obtained using the designed feature fusion algorithm, and the optimal segmentation model is obtained by fitting a cross-entropy loss function. Our method obtained intersection-over-union values of 89.45% for the Aerial Imagery Dataset, 71.88% for the Massachusetts Buildings Dataset, and 68.72% for the Satellite Dataset I.

Funder

Internal Parenting Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3