A Deep Learning Method for Building Extraction from Remote Sensing Images by Fuzing Local and Global Features

Author:

Wang Yitong1,Wang Shumin1ORCID,Yuan Jing2,Dou Aixia1,Gu Ziying1

Affiliation:

1. Institute of Earthquake Forecasting, CEA, Beijing 100036, China

2. School of Information Engineering, Institute of Disaster Prevention, Langfang 065201, China

Abstract

As important disaster-bearing bodies, buildings are the focus of attention in seismic disaster risk assessment and emergency rescue. It is of great practical significance to extract buildings quickly and accurately with complex textures and variable scales and shapes from high-resolution remote sensing images. We proposed an improved TransUnet model based on multiscale grouped convolution and attention named MATUnet to retain more local detail features and enhance the representation ability of global features, while reducing the network parameters. We designed the multiscale grouped convolutional feature extraction module with attention (GAM) to enhance the representation of detailed features. The convolutional positional encoding module (PEG) was added to redetermine the number of transformer, it solved the problem of local feature information loss and the difficulty of convergence of the network. The channel attention module (CAM) of the decoder enhanced the salient information of the features and solved the problem of information redundancy after feature fusion. We experimented through MATUnet on the WHU building dataset and Massachusetts dataset. MATUnet achieved the best IOU results of 92.14% and 83.22%, respectively, and achieved better than the other generalized and state-of-the-art networks under the same conditions. We also have achieved good segmentation results on the GF2 Xichang building dataset.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3