Efficient Underground Target Detection of Urban Roads in Ground-Penetrating Radar Images Based on Neural Networks

Author:

Xue Wei123ORCID,Chen Kehui123,Li Ting123,Liu Li123ORCID,Zhang Jian4

Affiliation:

1. School of Automation, China University of Geosciences, Wuhan 430074, China

2. Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China

3. Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education, Wuhan 430074, China

4. School of Electronic Information, Wuhan University, Wuhan 430072, China

Abstract

Ground-penetrating radar (GPR) is an important nondestructive testing (NDT) tool for the underground exploration of urban roads. However, due to the large amount of GPR data, traditional manual interpretation is time-consuming and laborious. To address this problem, an efficient underground target detection method for urban roads based on neural networks is proposed in this paper. First, robust principal component analysis (RPCA) is used to suppress the clutter in the B-scan image. Then, three time-domain statistics of each A-scan signal are calculated as its features, and one backpropagation (BP) neural network is adopted to recognize A-scan signals to obtain the horizontal regions of targets. Next, the fusion and deletion (FAD) algorithm is used to further optimize the horizontal regions of targets. Finally, three time-domain statistics of each segmented A-scan signal in the horizontal regions of targets are extracted as the features, and another BP neural network is employed to recognize the segmented A-scan signals to obtain the vertical regions of targets. The proposed method is verified with both simulation and real GPR data. The experimental results show that the proposed method can effectively locate the horizontal ranges and vertical depths of underground targets for urban roads and has higher recognition accuracy and less processing time than the traditional segmentation recognition methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Composite electromagnetic scattering and SAR imaging of the topographical environment;International Conference on Remote Sensing, Mapping, and Geographic Systems (RSMG 2023);2023-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3