Underground Object Classification for Urban Roads Using Instantaneous Phase Analysis of Ground-Penetrating Radar (GPR) Data

Author:

Park Byeongjin,Kim Jeongguk,Lee Jaesun,Kang Man-Sung,An Yun-KyuORCID

Abstract

Ground-penetrating radar (GPR) has been widely used to detect subsurface objects, such as hidden cavities, buried pipes, and manholes, owing to its noncontact sensing, rapid scanning, and deeply penetrating remote-sensing capabilities. Currently, GPR data interpretation depends heavily on the experience of well-trained experts because different types of underground objects often generate similar GPR reflection features. Moreover, reflection visualizations that were obtained from field GPR data for urban roads are often weak and noisy. This study proposes a novel instantaneous phase analysis technique to address these issues. The proposed technique aims to enhance the visibility of underground objects and provide objective criteria for GPR data interpretation so that the objects can be automatically classified without expert intervention. The feasibility of the proposed technique is validated both numerically and experimentally. The field test utilizes rarely available GPR data for urban roads in Seoul, South Korea and demonstrates that the technique allows for successful visualization and classification of three different types of underground objects.

Funder

Korea Railroad Research Institute

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference30 articles.

1. Independenthttp://www.independent.co.uk/news/world/asia/huge-sinkhole-opens-at-busy-chinese-intersection-a7000321.html

2. BBChttp://www.bbc.com/news/world-asia-37906065#

3. CBS Phillyhttp://philadelphia.cbslocal.com/2017/01/25/massive-sinkhole-opens-up-in-cheltenham-twp/

4. A review on natural and human-induced geohazards and impacts in karst

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3