Multi-Frequency GPR Data Fusion through a Joint Sliding Window and Wavelet Transform-Weighting Method for Top-Coal Structure Detection

Author:

Guan Zenglun1,Liu Wanli1ORCID

Affiliation:

1. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Top-coal structure detection is an important basis for realizing effective mining in fully mechanized cave faces. However, the top-coal structure is very complex and often contains multi-layer gangues, which seriously influence the level of effective mining. For these reasons, this paper proposes a novel multi-frequency ground-penetrating radar (GPR) data-fusing method through a joint sliding window and wavelet transform weighting method to accurately detect the top-coal structure. It possesses the advantages of both high resolution and great detection depth, and it can also integrate multi-frequency GPR data into one composite profile to interpret the internal structure information of top coal in detail. The detection procedure is implemented following several steps: First of all, the multi-frequency GPR data are preprocessed and aligned through a band-pass filter and a zero offset elimination method to establish their spatial correspondences. Secondly, the proposed method is used to determine the time-varying weight values of each frequency GPR signal according to the wavelet energy proportion within the sliding window; also, the edge detection algorithm is introduced to improve the fusion efficiency of the wavelet transform so as to realize the effective fusion of the multi-frequency GPR data. Thirdly, a reflection intensity model of multi-frequency GPR signals traveling in the top-coal is established by using the stratified identification method, and then, the detailed top-coal structure can be inversely interpreted. Finally, the quantitative evaluation criteria, information entropy (IE), space–frequency (SF) and Laplacian gradient (LG), are used to evaluate the multi-frequency GPR data fusion’s effectiveness in laboratory and field environments. The experimental results show that, compared with the genetic, time-varying and wavelet transform fusion method, the fusion performance of the presented method possesses higher values in the IE, SF and LG evaluation criteria, and it also has both the merits of high resolution and great detection depth.

Funder

Industry and Information Technology Development Program of Foundation Reconstruction and Manufacturing Industry High-Quality Development of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3