Optimization Analysis of Natural Ventilation in University Laboratories Based on CFD Simulation

Author:

Chen Xiao1ORCID,Chen Xingyin1,Su Rong1,Cao Benyi2ORCID

Affiliation:

1. College of Physics and Engineering Technology, Chengdu Normal University, Chengdu 611130, China

2. School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, UK

Abstract

In recent years, there has been a significant surge in the adoption of natural ventilation for building indoor spaces, garnering widespread attention. However, the research on human comfort optimization strategies closely related to the effect of natural ventilation is still relatively blank. Therefore, we have taken university laboratories as the research object and studied the use of CFD technology to construct numerical models. Based on previous research on the relevant theories of building ventilation and the impact of various air indicators on human comfort, we simulate the indoor airflow organization of buildings, and propose reasonable optimization design strategies based on simulation results and analysis conclusions. Compared to other studies on NV, we propose a completely new indicator, the Average rate of change in air age (ARCA), to assess the rate of improvement in air age. The results show that compared with the wind environment under basic conditions, the optimization strategy proposed by us increases the wind speed area suitable for human beings by about 14.3%, and reduces ARCA by about 53.3% at most.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3