Evaluation of Mixed-Mode Ventilation Thermal Performance and Energy Saving Potential from Retrofitting a Beijing Office Building

Author:

Duan Zhiyin,Sun Yan,Wang Minghui,Hu Ran,Dong XuelinORCID

Abstract

Mixed-mode cooling can effectively reduce the energy consumption of building cooling while satisfying the thermal comfort of occupancy and indoor air quality requirements. This paper predicted the thermal performance and energy-saving potential of an existing Beijing office building (in continental climates) operated in a mixed-mode from April to October. For the natural ventilation mode, the results predicted by simulation were validated with the results of experiments conducted in October 2021 and April 2022. Occupancy thermal comfort of the mixed-mode building was predicted using Predicted Mean Vote (PMV) and adaptive comfort models. The predictions demonstrated acceptable satisfactory thermal comfort for the occupancy. The results showed that the mixed-mode building’s annual cooling energy use is reduced by around 45% compared to the air-conditioned building. In addition, the building’s indoor temperature and velocity distributions were predicted using a Computational Fluid Dynamics (CFD) simulation. The validation showed a satisfactory agreement between CFD simulation and measurement data. It is found from CFD results that cross-ventilation can provide thermal comfort for the occupancy while improving fresh air requirements. The suggested that operational strategies of mixed-mode cooling can be used in office buildings in continental climates. Retrofitting the existing office building can bring a significant amount of energy saving.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Science Research Program of Beijing Municipal Education Commission

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3