Experimental Investigation of h-Type Supporting System for Excavation beneath Existing Underground Space

Author:

Xiao Yang,Wang Xiangge,Yu FengORCID,Wang Zijun

Abstract

A double-row pile support system combined with existing and additional support piles offers an effective solution for further excavation beneath existing underground space. A large-scale test chamber was therefore built to simulate the whole construction process of underground space extension. Several parallel tests are conducted through observation, data monitoring, and analysis to study the influence of several parameters on an h-type support system containing double-row piles. The relevant parameters include pile row spacing, pile length ratio, pile-head constraint, and in-service foundation pile. The tests reveal that a significant load-transfer effect is generated between the pile rows, and increasing the spacing between pile rows within a certain range can lead to a more reasonable distribution of bending moments and pile force. The displacement of the pile top and its rate of increase are directly proportional to excavation depth, and additional excavation to the bottom of the back-row piles tends to be a critical point, after which the deformation will be significant. The stability of the system varies inversely with the reduction in pile length ratio, but is positively related to the existing pile-head constraint. Furthermore, in-service foundation piles can result in increased bending moments and reduced displacement of the pile top. Finally, the rationality of the model test results was verified according to the numerical simulation and the stability of the double-row piles support system was calculated.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference45 articles.

1. Simplified Lateral Load Analyses of Fixed-Head Piles and Pile Groups

2. Lateral Behavior of a Double Sheet Pile Wall Structure

3. Model tests study on deformation mechanism of double-row-piles wall;Zheng;J. Build. Struct.,2018

4. Application of self-sustaining double-row piles in bracing of foundation pits of underground parking garages;Han;J. Geotech. Eng.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3