Study on Settlement of Self-Compacting Solidified Soil in Foundation Pit Backfilling Based on GA-BP Neural Network Model

Author:

Yuan Ze1,Gao Lei1,Chen Hejin1,Song Song2

Affiliation:

1. School of Civil Engineering and Transportation, Hohai University, Nanjing 210024, China

2. The Third Construction Co., Ltd. of China Construction Eighth Engineering Division, Nanjing 210032, China

Abstract

In order to predict the settlement of self-compacting solidified soil in foundation pit backfilling, finite element software is used to study the influence of soil properties and the surrounding structural properties of the foundation pit on the settlement of backfilled self-compacting solidified soil based on a foundation pit project in the city of Nanjing. The degree of influence of various factors influencing settlement is considered, a grey relational grade analysis is conducted, and input layer parameters of the neural network are determined based on the results of the grey relational grade analysis. Based on the GA-BP neural network model, the settlement of soil is predicted using numerical simulation results. The results reveal that the settlement and structural disturbance of self-compacting solidified soil after backfilling are smaller than those of fine silty sand; self-compacting solidified soil significantly improves the engineering performance of excavated soil. In the grey relational grade analysis, the six influencing factors that have high correlation with soil settlement can be used as input layer parameters for the neural network model. Among them, the correlation degree between elastic modulus and soil settlement is the highest, reaching 0.8402. The correlation degrees of the remaining five influencing factors are above 0.5, and the values are close. The GA-BP neural network can improve the overfitting situation of a BP neural network trapped in local optima, with R2 reaching 0.9999 and RMSE only 0.0018 mm, achieving high-precision prediction of settlement of self-compacting solidified soil.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of Hohai University

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3