Large Scale Model Test Study of Foundation Pit Supported by Pile Anchors

Author:

Su TiantaoORCID,Zhou Yong,Wang Zhengzhen,Ye Shuaihua

Abstract

Due to the special time–space and environmental effects of the foundation pit, there are many unstable factors in the construction process of the field test. The indoor model test can avoid many uncertainties in the construction process due to its operability, which can reduce the interference with the test results and improve the accuracy of the test. In order to further discuss the force-bearing characteristics and deformation laws of loess pits’ support structure in Northwest China, a large model test of foundation pit supported by a pile anchor with a geometric similarity ratio of 1:10 was designed and completed. The force and deformation characteristics of the support structure were systematically studied by simulating the conditions of additional load at the pit edge, soil layered excavated, and anchors tensioned. The test results show that: for the pile-anchor support structure, the anchors have significant limiting effects on the displacement of the piles. Especially, when the position of the first row of anchors is closer to the pile top, the displacement of the pile is smaller. The stress state of the piles was changed by the prestressed anchor. The passive stress state of piles is changed from one side of tension and the other side of compression to the active stress state of “S” shape, which makes the distribution of the bending moment of piles more reasonable. The measured earth pressure in the process of soil unloading has a nonlinear distribution, which is different from the classical Rankine earth pressure distribution; specifically, the passive earth pressure in front of the pile is more obvious. In addition, the prestress applied to the anchors has a more significant effect on the internal forces of the other anchors. Compared with sequential tensioning, the prestress loss caused by interval hole tensioning is significantly reduced. The greater the number of spaced holes, the smaller the prestress loss and the better the anchoring effect of the anchor. The results of the study can provide reference for similar model tests, and also for related engineering applications.

Funder

National Natural Science Foundation of China

Technology Project of Gansu Provincial Department of Housing and Urban-Rural Development Construction

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3