Author:
Bai Bing,Wang Yan,Rao Dengyu,Bai Fan
Abstract
The smoothed particle hydrodynamics (SPH) method was employed to simulate the heat transfer process in porous media at the pore scale. The effective thermal conductivity of a porous medium can be predicted through a simulation experiment of SPH. The accuracy of the SPH simulation experiment was verified by comparing the predicted values with reference values for ideal homogeneous media and multiphase layered media. 3D simulation experiments were implemented in granular media generated by the PFC method. Based on the SPH framework, a concise method was proposed to produce unsaturated media by simulating the wetting process in dry media. This approach approximates the formation of liquid bridges and water films on granules. Through simulation experiments, the empirical formula of the variation in thermal conductivity with the degree of saturation was tested. The results showed that the reciprocal of the normalized thermal conductivity and the reciprocal of the saturation are linearly related, which is in line with the empirical formula proposed by Cote and Konrad.
Subject
General Earth and Planetary Sciences
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献