Anchor Shear Strength Damage under Varying Sand Content, Freeze-Thaw Cycles, and Axial Pressure Conditions

Author:

Dong Jie1,Wang Yin-Chen1ORCID,Wu Zhi-Hui1,Gong Feng-Wu2,Zhao Ya-Dong1,Zhang Hong-Feng1

Affiliation:

1. College of Civil Engineering, Hebei University of Architecture, Zhangjiakou 075000, China

2. No. 3 Geological Brigade, Hebei Provincial Geological Prospec Ting Bureau, Zhangjiakou 075000, China

Abstract

Sandy soil in the north of Hebei region of China is widely distributed, the temperature difference between day and night is large, the phenomenon of freezing and thawing is obvious, and the soil body before and after the freezing and thawing cycle of sandy soil slopes is affected by the changes. This paper takes the stability of a sandy soil anchorage interface under a freeze-thaw cycle as the research background and, based on the self-developed anchor-soil interface shear device, analyses the influence of changing sand rate, confining pressure, and the number of freeze-thaw cycles on the shear characteristics of an anchor-soil interface in anchorage specimens. The research findings indicate that, at 50–60% sand contents, the shear strength increases with a higher sand content and is positively correlated with confining pressure within a higher range. A higher sand content stabilises the anchoring body, but an excessively high sand content can lead to failure. Increasing the sand content, confining pressure, and freeze-thaw cycle number all result in a reduction in the shear displacement at the peak strength. After 11 freeze-thaw cycles, the shear strength of the anchoring body stabilises, with a reduction in strength of approximately 32%, and a higher sand content effectively reduces the reduction in strength.

Funder

Natural Science Foundation of China

Natural Science Foundation of the Hebei Province of China

Research Project of Young Top Talent in Hebei Province

Project of Research Start-up Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3