Flexural Performance of RC Beams Strengthened with Pre-Stressed Iron-Based Shape Memory Alloy (Fe-SMA) Bars: Numerical Study

Author:

Khalil AhmedORCID,Elkafrawy MohamedORCID,Abuzaid WaelORCID,Hawileh RamiORCID,AlHamaydeh MohammadORCID

Abstract

The iron-based shape memory alloy (Fe-SMA) has promising applications in strengthening and repairing aged steel-reinforced concrete structural elements. Fe-SMA bars can produce pre-stressing forces on reinforced concrete members by activating their shape memory phenomenon upon heating. This study aims to numerically evaluate the impact of pre-stressed Fe-SMA bars on the structural behavior of reinforced concrete (RC) beams at the serviceability and ultimate stages. Nonlinear finite element (FE) models were developed to predict the response of RC beams externally strengthened with Fe-SMAs. The model shows to correlate well with published experimental results. A parametric investigation was also carried out to examine the effect of various concrete grades, pre-stressing levels, and Fe-SMA bars’ diameter on load-deflection behavior. In light of the innovative nature of the Fe-SMA strengthening technique, a comparison investigation was established between RC beams strengthened with Fe-SMA bars against different pre-stressing systems, such as carbon fiber reinforced polymer (CFRP) bars, glass fiber reinforced polymer (GFRP) bars, and steel strands. The numerical findings showed a significant increase in the beams’ load-carrying capacity with larger Fe-SMA bars’ diameter. Specifically, using 12 mm Fe-SMA bars instead of 6 mm increased the beam’s strength by 73%. However, a 14% reduction in ductility was recorded for that case. Moreover, the pre-stressing level of Fe-SMA bars and concrete grade showed a negligible effect on the ultimate strength of the examined beams. Moreover, increasing the pre-stressing level and concrete strength significantly enhanced the load-deflection response in the serviceability stage. Furthermore, using 2T22 mm of Fe-SMA bars resulted in a better structural performance of RC beams compared to other techniques with 2T12 mm, with a comparable cost. Thus, it can be concluded that using Fe-SMA bars embedded in a shotcrete layer attached to the beam’s soffit is a viable and promising strengthening strategy. Nevertheless, further experimental investigations are recommended to further ascertain the reported findings of this numerical investigation.

Funder

American University of Sharjah

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3