Impact Performance of RC Beams Reinforced by Engineered Cementitious Composite

Author:

Wu Jiehao1

Affiliation:

1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China

Abstract

To mitigate potential damage to RC structures subjected to impact load—especially spalling damage—engineered cementitious composite (ECC) is applied, with the aim of reinforcing the RC members, so as to improve their impact performance. In the present study, the response of beams, with and without ECC reinforcement, to impact loading was investigated. Firstly, the mechanical properties of the ECC were characterized by quasi-static compression and tension tests, as well as by dynamic direct tension tests. Then, the K&C model (Karagozian and Case Concrete Model) was employed to delineate the ECC behavior, whose parameters were calibrated using the test data. Subsequently, models of RC beams with and without ECC reinforcement, validated using the drop weight test, were established to investigate the impact response. The numerical results suggested that the performance of the impact resistance of the ECC-reinforced RC beams was significantly improved. The damage degree of the ECC-reinforced members was effectively reduced, the degree of deformation was effectively controlled, and the energy consumption capacity was significantly increased while the impact load and transferred load increased. In particular, the method of multiple separate layers as reinforcement, proposed in this study, was found to reduce effectively the response and damage extent, improve the energy dissipation, and control the impact load and transferred load within certain levels. In addition, the multiple separate ECC layers effectively prevented the crack propagation caused by the cracking of the member, ensured the residual integrity of the member, and further improved the performance of the impact resistance of the member comprehensively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3