Affiliation:
1. Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
2. Structural Engineering Department, Faculty of Engineering, Tanta University, Tanta P.O. Box 31733, Egypt
3. Department of Civil Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
4. Department of Mechanical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
Abstract
Openings in the shear span can significantly affect the structural behavior of reinforced concrete (RC) beams, particularly in terms of shear capacity and crack propagation. This paper aims to investigate the feasibility of strengthening the web opening in the shear zone of RC beams by using iron-based shape memory alloy (Fe-SMA) bars, providing valuable insights for structural engineers and researchers. Numerical analysis with ABAQUS/CAE 2020 software was employed in the current study. The research was divided into six groups of beams with web openings of different lengths (150, 300, and 450 mm), prestressing levels (0%, 30%, and 60%), and reinforcement diameters (14, 18, and 22 mm) of Fe-SMA bars. The results show that the presence of web openings can cause a significant reduction in the cracking and ultimate loads of the beams, with reductions ranging from 11% to 50% and 36% to 48%, respectively. However, by adding pre-stressed Fe-SMA bars around small web openings (100 × 150 mm), the shear capacity of the beam is restored, and the beam exhibits behavior similar to solid beams. Additionally, activating the Fe-SMA bars by 30% and 60% resulted in almost similar cracking loads but improved load-carrying capacity of the beam with small openings by 12% and 9%, respectively, compared to the solid beam. The technique proposed for enhancing shear strength is most effective for beams with small (100 × 150 mm) and medium (100 × 300 mm) web openings as it can restore both the beam’s shear strength and stiffness. However, for beams with larger web openings (100 × 450 mm), the use of activated Fe-SMA beams can recover almost 90% of the solid beam’s shear capacity. Furthermore, reinforcing small openings with Fe-SMA bars of different diameters enhances beam shear capacity and stiffness, while for larger openings, higher Fe-SMA reinforcement ratios could potentially restore the beam’s full strength and stiffness. This study emphasizes the importance of strengthening web openings in RC beams, particularly in shear zones, and provides significant insights into how to strengthen beams with web openings, thereby contributing to developing safer structures. However, further laboratory experiments are recommended to validate, complement and extend the findings of this numerical study.
Funder
American University of Sharjah
Subject
Building and Construction,Civil and Structural Engineering,Architecture