Multiple Defects Inspection of Dam Spillway Surface Using Deep Learning and 3D Reconstruction Techniques

Author:

Hong Kunlong123ORCID,Wang Hongguang12,Yuan Bingbing123,Wang Tianfu123

Affiliation:

1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Chuangxin Road 135, Shenyang 110016, China

2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Chuangxin Road 135, Shenyang 110016, China

3. University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China

Abstract

After a lengthy period of scouring, the reinforced concrete surface of the dam spillway (i.e., drift spillways and flood discharge spillways) will suffer from deterioration and damage. Regular manual inspection is time-consuming and dangerous. This paper presents a robotic solution to detect automatically, count defect instance numbers, and reconstruct the surface of dam spillways by incorporating the deep learning method with a visual 3D reconstruction method. The lack of a real dam defect dataset and incomplete registration of minor defects on the 3D mesh model in fusion step are two challenges addressed in the paper. We created a multi-class semantic segmentation dataset of 1711 images (with resolutions of 848 × 480 and 1280 × 720 pixels) acquired by a wall-climbing robot, including cracks, erosion, spots, patched areas, and power safety cable. Then, the architecture of the U-net is modified with pixel-adaptive convolution (PAC) and conditional random field (CRF) to segment different scales of defects, trained, validated, and tested using this dataset. The reconstruction and recovery of minor defect instances in the flow surface and sidewall are facilitated using a keyframe back-projection method. By generating an instance adjacency matrix within the class, the intersection over union (IoU) of 3D voxels is calculated to fuse multiple instances. Our segmentation model achieves an average IoU of 60% for five defect class. For the surface model’s semantic recovery and instance statistics, our method achieves accurate statistics of patched area and erosion instances in an environment of 200 m2, and the average absolute error of the number of spots and cracks has reduced from the original 13.5 to 3.5.

Funder

China Yangtze Power Co., Ltd.

Shenyang Institute of Automation, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference41 articles.

1. Development and prospect of defect detection technology for concrete dams;Huang;Dam Saf.,2016

2. Wan, G., Yang, J., Zhang, Y., Gu, W., and Liao, X. (2015). Selection of the maintenance and repairing equipment for flow surfaces and sidewalls of the drift holes and flood discharge holes in Three Gorges Dam. Hydro Power New Energy, 45–47.

3. Utilizing UAV and 3D computer vision for visual inspection of a large gravity dam;Khaloo;Front. Built Environ.,2018

4. Damage detection and finite-element model updating of structural components through point cloud analysis;Ghahremani;J. Aerosp. Eng.,2018

5. Khaloo, A., and Lattanzi, D. (2019). Dynamics of Civil Structures, Volume 2, Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3