A Comprehensive Survey on Visual Perception Methods for Intelligent Inspection of High Dam Hubs

Author:

Peng Zhangjun12ORCID,Li Li23,Liu Daoguang12,Zhou Shuai1,Liu Zhigui13

Affiliation:

1. School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China

2. School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China

3. Sichuan Engineering Technology Research Center of Industrial Self-Supporting and Artificial Intelligence, Mianyang 621010, China

Abstract

There are many high dam hubs in the world, and the regular inspection of high dams is a critical task for ensuring their safe operation. Traditional manual inspection methods pose challenges related to the complexity of the on-site environment, the heavy inspection workload, and the difficulty in manually observing inspection points, which often result in low efficiency and errors related to the influence of subjective factors. Therefore, the introduction of intelligent inspection technology in this context is urgently necessary. With the development of UAVs, computer vision, artificial intelligence, and other technologies, the intelligent inspection of high dams based on visual perception has become possible, and related research has received extensive attention. This article summarizes the contents of high dam safety inspections and reviews recent studies on visual perception techniques in the context of intelligent inspections. First, this article categorizes image enhancement methods into those based on histogram equalization, Retinex, and deep learning. Representative methods and their characteristics are elaborated for each category, and the associated development trends are analyzed. Second, this article systematically enumerates the principal achievements of defect and obstacle perception methods, focusing on those based on traditional image processing and machine learning approaches, and outlines the main techniques and characteristics. Additionally, this article analyzes the principal methods for damage quantification based on visual perception. Finally, the major issues related to applying visual perception techniques for the intelligent safety inspection of high dams are summarized and future research directions are proposed.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3