Affiliation:
1. College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
2. China Design Group Corporation Limited, Nanjing 210014, China
Abstract
Horizontal deformation is a key parameter in the structural assessment of concrete piles, especially in landslide cases. However, the existing deformation-monitoring methods cannot satisfy the demands of long-term monitoring. Therefore, a new method based on distributed optical-fibre sensing technology is proposed for the long-term monitoring of the horizontal deformation of concrete piles. First, a distributed long-gauge optical-fibre sensor is embedded into a fibre-reinforced polymer (FRP) for the excellent distributed strain measurement of the concrete piles in damage cases, such as concrete cracking and reinforcement yielding. Second, based on the typical Winkler beam model, a calculation theory can be constructed for the horizontal deformation of the concrete piles with the input of the strain measurement. Lastly, the proposed method is verified via finite element simulation and static experiments in a laboratory, and the results show good accuracy. Before the case of reinforcement yielding, the largest measurement error of deformation is about 1 mm. It can be up to several millimetres after reinforcement yielding due to the large gap between the calculation model and the actual structure, while the relative measurement error is only about 10%. Due to the distributed strain measurement, the inside horizontal deformation distribution of the concrete piles can be monitored online with the proposed method to implement a detailed assessment of the pile health. Additionally, considering the excellent long-term performance of FRPs and optical-fibre sensors, the proposed method can be applied for the long-term deformation monitoring of concrete piles.
Funder
National Key R&D Program of China
Jiangsu Transportation Technology and Achievement Transformation Project
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献