Deflection Monitoring Method for Simply Supported Girder Bridges Using Strain Response under Traffic Loads

Author:

Tang Yongsheng12ORCID,Cang Jigang1,Zheng Bohan1,Tang Wei1

Affiliation:

1. College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China

2. Engineering Research Center of Intelligent Construction and Industrialization, CAAC, Tianjin 300456, China

Abstract

Deflection measurements are usually used as a key index in civil engineering for performing structural assessments of bridge safety. However, owing to technical or cost issues, it may be difficult to implement long-term monitoring of bridge deflection, especially for short- or medium-span bridges. Therefore, this study presents a novel method for measuring the deflection of simply supported girder bridges. In the proposed method, the strain measurement was implemented under traffic loading at only one position, such as middle span, and then the strain distribution along the girder was reconstructed to calculate the girder deflection with basic structural mechanical theory. To implement the method, the theory was constructed based on the displacement reciprocal theorem at first to assess the strain distribution along the girder from the strain measurement at some position during traffic loads passing across the bridge. Second, a strain measurement method, namely long-gauge fibre Bragg grating (FBG) sensing technology, was introduced to take strain measurements for a concrete bridge. Third, various finite element (FE) bridge models were developed to validate the proposed method’s accuracy, the results from which indicated that the method accurately implemented deflection measurement with an approximately 5% calculation error. In addition, the influence of some key parameters, such as vehicle type, vehicle speed, and structural damage, was investigated. The simulation results revealed that damage to the hinge joint in the middle location could significantly influence the proposed method’s accuracy such that the error may exceed 10%. Finally, on-site experiments were conducted on a simply supported girder bridge to further validate the proposed method’s accuracy, and an approximately 8% deflection assessment error was found. Considering the additional advantages of FBG sensing technology, the proposed method can also be effective for long-term deflection measurements of short- or medium-span bridges.

Funder

Engineering Research Center of Intelligent Construction and Industrialization, CAAC

National Key R&D Program of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3