Sensorless Control of SMA-based Actuators Using Neural Networks

Author:

Asua Estibalitz1,Feutchwanger Jorge2,García-Arribas Alfredo3,Etxebarria Victor3

Affiliation:

1. Departamento de Electricidad y Electrónica, Universidad del País Vasco.Apartado 644, 48080 Bilbao, Spain,

2. ESS Bilbao Consortium, Parque Tecnológico de Zamudio, 207B, 48160 Derio, Spain

3. Departamento de Electricidad y Electrónica, Universidad del País Vasco.Apartado 644, 48080 Bilbao, Spain

Abstract

The ability of shape memory alloys (SMA) to respond to an external stimulus by modifying their dimensions can be used to generate motion or force in electromechanical devices and micro-machines. It has been often demonstrated that SMA-based devices are serious alternatives to conventional micrometric actuators. We have previously demonstrated that, using a high-quality position sensor, such as a linear variable differential transformer (LVDT), to provide the position feedback, accuracies about 3 μm in position control can be obtained. In this work, we present an actuator prototype based in a SMA wire, conceived to be used in lightweight applications, where the bulky position sensor previously used is replaced with a lighter alternative. The most convenient one, and also the most challenging, is to use the wire’s own resistance as a measure of its position, that is, to implement a sensorless control strategy. We propose to use a neural network to characterize the relation between the resistance of the wire and its strain and introduce this correspondence as the position feedback in a simple PID closed loop. The experimental results show that, in this way, accuracies about 70 μm can be obtained. The great advantage of this procedure is that the actuator is reduced to a single SMA element without any additional sensor, which is of great importance when the main goals are to reduce the overall weight, size, and cost of the actuator.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3