Early Shrinkage Modeling of Complex Internally Confined Concrete Based on Capillary Tension Theory

Author:

Zhou Fengbin1,Jiang Hao1,Huang Lepeng1,Hu Ying1,Xie Zhuolin1,Zeng Zhikai2,Liu Maoyi2,Wang Bo3,Zhou Xingyang4

Affiliation:

1. School of Civil Engineering, Chongqing University, Chongqing 400045, China

2. Chongqing Urban Investment Infrastructure Construction Co., Ltd., Chongqing 400045, China

3. China Metallurgical Construction Engineering Group Co., Ltd., Chongqing 400084, China

4. Department of Civil Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China

Abstract

This paper evaluates the shrinkage performance of concrete under complex internal constraint environments comprising steel plates, studs, and reinforcement to investigate their respective influence laws on the shrinkage performance of concrete. An early shrinkage model of concrete under complex internal constraints was established based on the theory of capillary tension, and the effects of steel plate, nails, and steel reinforcement on the shrinkage performance of concrete were theoretically analyzed. Six sets of concrete-constrained shrinkage tests and pore structure tests were then performed under different internal constraint conditions with the steel plate thickness, reinforcement diameter, and stud-related parameters (stud diameter, height, and spacing) as research variables. The test results demonstrate that the pore structure of concrete increases with the increase in the constraint coefficient, and that the increase in the pore structure will cause a decrease in the capillary pore stress, which is the driving force of concrete shrinkage. Its decrease will inevitably lead to a decrease in concrete shrinkage. By comparing the calculated values of the shrinkage model with the measured values, it is found that the average value of the prediction error is less than 15%, which reveals that the predicted values of shrinkage are in good agreement with the measured values and proves that the model can effectively predict the shrinkage of concrete that is restrained by steel plates, pins, and reinforcing bars.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3