Machine learning based prediction models for spilt tensile strength of fiber reinforced recycled aggregate concrete
Author:
Publisher
Elsevier BV
Reference82 articles.
1. X. Han, K. Cui, Q. Xiao, Physics assisted machine learning methods for predicting the cracking performance of recycled aggregate concrete, (2022).
2. Preparation and characterization of high-strength geopolymer based on BH-1 lunar soil simulant with low alkali content;Zhou;Engineering,2021
3. Property assessment of high-performance concrete containing three types of fibers;Huang;Int. J. Concr. Struct. Mater.,2021
4. Strength prediction model and methods for improving recycled aggregate concrete;Younis;Constr. Build. Mater.,2013
5. Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments;Sun;Adv. Struct. Eng.,2022
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Explainable hybridized ensemble machine learning for the prognosis of the compressive strength of recycled plastic-based sustainable concrete with experimental validation;Multiscale and Multidisciplinary Modeling, Experiments and Design;2024-08-21
2. A systematic literature review of AI-based prediction methods for self-compacting, geopolymer, and other eco-friendly concrete types: Advancing sustainable concrete;Construction and Building Materials;2024-08
3. Uso de inteligência artificial para previsão de características de compósitos cimentícios reforçados com fibras: uma revisão sistemática;Caderno Pedagógico;2024-07-25
4. Evaluation of machine learning models for predicting TiO2 photocatalytic degradation of air contaminants;Scientific Reports;2024-06-13
5. Predictive models in machine learning for strength and life cycle assessment of concrete structures;Automation in Construction;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3