Long-Term Monitoring of Local Track Irregularity and Its Influence for Simply Supported Girder Bridge of HSR

Author:

Li Guolong,Yang Fei,Ke Zaitian,Sun Xianfu,Liu Bing,Zhao Wenbo,Zhou Yunlai

Abstract

By analyzing dynamic track geometric irregularity data of high-speed railway (HSR) with ballast track in China, there is a peak of [5, 11] m wavelength for the longitudinal level at the beam joint of simply supported girder bridges. The difference between the absolute value of track longitudinal level at the beam joint and that at the midspan is one to three mm. Under annual temperature cycle, the ballast at the beam joint loosens because of the bridge–track interaction, which results in the longitudinal level at the beam joint gets larger in winter and smaller in summer, that means the longitudinal level is negatively correlated with temperature, and at the same time, the development of the track longitudinal level and Track Quality Index (TQI) with the temperature are given. In addition, the vertical acceleration of axle box and bogie, and wheel–rail vertical force are larger when the train passes the beam joint than when it passes the midspan, which threatens running safety significantly. This article established a three-dimensional vehicle–track–bridge finite element model (FEM), thus the thresholds of track longitudinal level at the beam joint for simply supported girder bridge with ballast track in 250 km/h HSR were proposed, i.e., the maximum of dynamic track longitudinal level is 14 mm, and the maximum of static value is 11 mm. Once one of the two thresholds exceeds the corresponding limit, the train speed should be reduced to 160 km/h or below.

Funder

the Classification of Project of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3