Fluorescent Imaging and Multifusion Segmentation for Enhanced Visualization and Delineation of Glioblastomas Margins

Author:

Deshpande Aditi,Cambria Thomas,Barnes Charles,Kerwick Alexandros,Livanos GeorgeORCID,Zervakis Michalis,Beninati Anthony,Douard NicolasORCID,Nowak Martin,Basilion James,Cutter Jennifer L.,Bauman Gloria,Shrestha Suman,Giakos Zoe,Elmannai Wafa,Wang Yi,Foroutan Paniz,Farrahi TannazORCID,Giakos George C.

Abstract

This study investigates the potential of fluorescence imaging in conjunction with an original, fused segmentation framework for enhanced detection and delineation of brain tumor margins. By means of a test bed optical microscopy system, autofluorescence is utilized to capture gray level images of brain tumor specimens through slices, obtained at various depths from the surface, each of 10 µm thickness. The samples used in this study originate from tumor cell lines characterized as Gli36ϑEGRF cells expressing a green fluorescent protein. An innovative three-step biomedical image analysis framework is presented aimed at enhancing the contrast and dissimilarity between the malignant and the remaining tissue regions to allow for enhanced visualization and accurate extraction of tumor boundaries. The fluorescence image acquisition system implemented with an appropriate unsupervised pipeline of image processing and fusion algorithms indicates clear differentiation of tumor margins and increased image contrast. Establishing protocols for the safe administration of fluorescent protein molecules, these would be introduced into glioma tissues or cells either at a pre-surgery stage or applied to the malignant tissue intraoperatively; typical applications encompass areas of fluorescence-guided surgery (FGS) and confocal laser endomicroscopy (CLE). As a result, this image acquisition scheme could significantly improve decision-making during brain tumor resection procedures and significantly facilitate brain surgery neuropathology during operation.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3