Efficient Approach to Color Image Segmentation Based on Multilevel Thresholding Using EMO Algorithm by Considering Spatial Contextual Information

Author:

Rangu Srikanth1,Veramalla Rajagopal1ORCID,Salkuti Surender Reddy2ORCID,Kalagadda Bikshalu3

Affiliation:

1. Department of ECE, Kakatiya Institute of Technology and Science, Warangal 506015, India

2. Department of Railroad and Electrical Engineering, Woosong University, Daejeon 34606, Republic of Korea

3. Department of ECE, Kakatiya University, Warangal 506009, India

Abstract

The process of image segmentation is partitioning an image into its constituent parts and is a significant approach for extracting interesting features from images. Over a couple of decades, many efficient image segmentation approaches have been formulated for various applications. Still, it is a challenging and complex issue, especially for color image segmentation. To moderate this difficulty, a novel multilevel thresholding approach is proposed in this paper based on the electromagnetism optimization (EMO) technique with an energy curve, named multilevel thresholding based on EMO and energy curve (MTEMOE). To compute the optimized threshold values, Otsu’s variance and Kapur’s entropy are deployed as fitness functions; both values should be maximized to locate optimal threshold values. In both Kapur’s and Otsu’s methods, the pixels of an image are classified into different classes based on the threshold level selected on the histogram. Optimal threshold levels give higher efficiency of segmentation; the EMO technique is used to find optimal thresholds in this research. The methods based on an image’s histograms do not possess the spatial contextual information for finding the optimal threshold levels. To abolish this deficiency an energy curve is used instead of the histogram and this curve can establish the spatial relationship of pixels with their neighbor pixels. To study the experimental results of the proposed scheme, several color benchmark images are considered at various threshold levels and compared with other meta-heuristic algorithms: multi-verse optimization, whale optimization algorithm, and so on. The investigational results are illustrated in terms of mean square error, peak signal-to-noise ratio, the mean value of fitness reach, feature similarity, structural similarity, variation of information, and probability rand index. The results reveal that the proposed MTEMOE approach overtops other state-of-the-art algorithms to solve engineering problems in various fields.

Funder

Woosong University’s Academic Research Funding

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Slime mould algorithm with mechanism of leadership and self-phagocytosis for multilevel thresholding of color image;Applied Soft Computing;2024-09

2. Multi-level thresholding segmentation based on levy horse optimized machine learning approach;Multimedia Tools and Applications;2024-04-24

3. New indicators and standards for measuring of the end mill's helical groove by image processing;Optical Metrology and Inspection for Industrial Applications X;2023-11-27

4. Median-type Otsu threshold segmentation based on energy curve;2023 6th International Conference on Artificial Intelligence and Pattern Recognition (AIPR);2023-09-22

5. Algebraic Multi-Layer Network: Key Concepts;Journal of Imaging;2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3