Shape and Composition Evolution in an Alloy Core–Shell Nanowire Heterostructure Induced by Adatom Diffusion

Author:

Han Delong1,Tang Wenlei2,Sun Naizhang2,Ye Han2ORCID,Chai Hongyu3,Wang Mingchao4ORCID

Affiliation:

1. Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China

2. State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China

3. Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

4. Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia

Abstract

A core–shell nanowire heterostructure is an important building block for nanowire-based optoelectronic devices. In this paper, the shape and composition evolution induced by adatom diffusion is investigated by constructing a growth model for alloy core–shell nanowire heterostructures, taking diffusion, adsorption, desorption and incorporation of adatoms into consideration. With moving boundaries accounting for sidewall growth, the transient diffusion equations are numerically solved by the finite element method. The adatom diffusions introduce the position-dependent and time-dependent adatom concentrations of components A and B. The newly grown alloy nanowire shell depends on the incorporation rates, resulting in both shape and composition evolution during growth. The results show that the morphology of nanowire shell strongly depends on the flux impingement angle. With the increase in this impingement angle, the position of the largest shell thickness on sidewall moves down to the bottom of nanowire and meanwhile, the contact angle between shell and substrate increases to an obtuse angle. Coupled with the shell shapes, the composition profiles are shown as non-uniform along both the nanowire and the shell growth directions, which can be attributed to the adatom diffusion of components A and B. The impacts of parameters on the shape and composition evolution are systematically investigated, including diffusion length, adatom lifetime and corresponding ratios between components. This kinetic model is expected to interpret the contribution of adatom diffusion in growing alloy group-IV and group III-V core–shell nanowire heterostructures.

Funder

National Key Research and Development Program of China

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3