Semiconductor nanowire arrays for optical sensing: a numerical insight on the impact of array periodicity and density

Author:

Zagaglia LucaORCID,Demontis Valeria,Rossella FrancescoORCID,Floris FrancescoORCID

Abstract

Abstract Recent advances in the nanofabrication and modeling of metasurfaces have shown the potential of these systems in providing unprecedented control over light–matter interactions at the nanoscale, enabling immediate and tangible improvement of features and specifications of photonic devices that are becoming always more crucial in enhancing everyday life quality. In this work, we theoretically demonstrate that metasurfaces made of periodic and non-periodic deterministic assemblies of vertically aligned semiconductor nanowires can be engineered to display a tailored effective optical response and provide a suitable route to realize advanced systems with controlled photonic properties particularly interesting for sensing applications. The metasurfaces investigated in this paper correspond to nanowire arrays that can be experimentally realized exploiting nanolithography and bottom-up nanowire growth methods: the combination of these techniques allow to finely control the position and the physical properties of each individual nanowire in complex arrays. By resorting to numerical simulations, we address the near- and far-field behavior of a nanowire ensemble and we show that the controlled design and arrangement of the nanowires on the substrate may introduce unprecedented oscillations of light reflectance, yielding a metasurface which displays an electromagnetic behavior with great potential for sensing. Finite-difference time-domain numerical simulations are carried out to tailor the nanostructure parameters and systematically engineer the optical response in the VIS-NIR spectral range. By exploiting our computational-methods we set-up a complete procedure to design and test metasurfaces able to behave as functional sensors. These results are especially encouraging in the perspective of developing arrays of epitaxially grown semiconductor nanowires, where the suggested design can be easily implemented during the nanostructure growth, opening the way to fully engineered nanowire-based optical metamaterials.

Funder

Scientific Foundation Ireland

PRIN PELM

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3