Automated Glacier Snow Line Altitude Calculation Method Using Landsat Series Images in the Google Earth Engine Platform

Author:

Li XiangORCID,Wang NinglianORCID,Wu Yuwei

Abstract

Glacier snow line altitude (SLA) at the end of the ablation season is an indicator of the equilibrium line altitude (ELA), which is a key parameter for calculating and assessing glacier mass balance. Here, we present an automated algorithm to classify bare ice and snow cover on glaciers using Landsat series images and calculate the minimum annual glacier snow cover ratio (SCR) and maximum SLA for reference glaciers during the 1985–2020 period in Google Earth Engine. The calculated SCR and SLA values are verified using the observed glacier accumulation area ratio (AAR) and ELA. We select 14 reference glaciers from High Mountain Asia (HMA), the Caucasus, the Alps, and Western Canada, which represent four mountainous regions with extensive glacial development in the northern hemisphere. The SLA accuracy is ~73%, with a mean uncertainty of ±24 m, for 13 of the reference glaciers. Eight of these glaciers yield R2 > 0.5, and the other five glaciers yield R2 > 0.3 for their respective SCR–AAR relationships. Furthermore, 10 of these glaciers yield R2 > 0.5 and the other three glaciers yield R2 > 0.3 for their respective SLA–ELA relationships, which indicate that the calculated SLA from this algorithm provides a good fit to the ELA observations. However, Careser Glacier yields a poor fit between the SLA calculations and ELA observations owing to tremendous surface area changes during the analyzed time series; this indicates that glacier surface shape changes due to intense ablation will lead to a misclassification of the glacier surface, resulting in deviations between the SLA and ELA. Furthermore, cloud cover, shadows, and the Otsu method limitation will further affect the SLA calculation. The post-2000 SLA values are better than those obtained before 2000 because merging the Landsat series images reduces the temporal resolution, which allows the date of the calculated SLA to be closer to the date of the observed ELA. From a regional perspective, the glaciers in the Caucasus, HMA and the Alps yield better results than those in Western Canada. This algorithm can be applied to large regions, such as HMA, to obtain snow line estimates where manual approaches are exhaustive and/or unfeasible. Furthermore, new optical data, such as that from Sentinel-2, can be incorporated to further improve the algorithm results.

Funder

the Strategic Priority Research Program of the Chinese Academy of Sciences

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3