Aperture Design Optimization of Wire-Wrapped Screens for SAGD Production Wells

Author:

Pallares Jesus David Montero12,Wang Chenxi13ORCID,Haftani Mohammad1,Nouri Alireza1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2E3, Canada

2. Gran Tierra Energy, Calgary, AB T2P 0R3, Canada

3. China National Offshore Oil Corporation (CNOOC) Research Institute Ltd., China National Offshore Oil Corporation, Beijing 100028, China

Abstract

Wire-wrapped screens have been established as one of the primary sand control devices in Steam-Assisted Gravity Drainage (SAGD) wells due to the high open-to-flow area and superior plugging attributes. However, their design is still a point of interest for thermal operations. Generally, existing approaches rely on one or more particular points of reservoir sands’ particle size distribution (PSD) and rules of thumb inferred from other devices like the slotted liners. This study used Sand Retention Testing (SRT) to analyze the performance of WWS under various testing conditions, which were neglected in the current design criteria. The experimental investigation leads to a set of graphical design criteria that provide an optimum aperture size window. The results show that the sand retention performance of WWS is highly dependent on the flow velocities of the wetting phase. Moreover, the testing showed satisfactory plugging performance of WWS even with narrow aperture sizes, proving a superior performance for low-quality oil sands.

Funder

RGL Reservoir Management

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sand screen selection by sand retention test: a review of factors affecting sand control design;Journal of Petroleum Exploration and Production Technology;2024-05-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3