Laboratory Challenges of Sand Production in Unconsolidated Cores

Author:

Ali Mohammad A.1,Al-Hamad K..2,Al-Haddad A..1,AlKholosy S..1,Sennah H. Abu2,Sanyal T..2,Aniel J..2

Affiliation:

1. Kuwait Institute for Scientific Research

2. Kuwait Oil Company

Abstract

Abstract Improved oil recovery for heavy oil reservoirs is becoming a new research study for Kuwaiti reservoirs. There are two mechanisms for improved oil recovery by thermal methods. The first method is to heat the oil to higher temperatures, and thereby, decrease its viscosity for improved mobility. The second mechanism is similar to water flooding, in which oil is displaced to the production wells. While more steam is needed for this method than for the cyclic method, it is typically more effective at recovering a larger portion of the oil. Steam injection heats up the oil and reduce its viscosity for better mobility and higher sweep efficiency. During this process, the velocity of the moving oil increases with lower viscosity oil; and thus, the heated zone around the injection well will have high velocity. The increase of velocity in an unconsolidated formation is usually accompanied with sand movement in the reservoir creating a potential problem. The objective of this study was to understand the effect of flowrate and viscosity on sand production in heavy oil reservoir that is subjected for thermal recovery process. The results would be useful for designing completion under steam injection where the viscosity of the oil is expected to change due to thermal operations. A total of 21 representative core samples were selected from different wells in Kuwait. A reservoir condition core flooding system was used to flow oil into the core plugs and to examine sand production. Initially, the baseline liquid permeability was measured with low viscosity oil and low flowrate. Then, the flowrate was increased gradually and monitored to establish the value for sand movement for each plug sample. At the end of the test, the produced oil containing sand was filtered for sand content. The result showed that sand production increased with higher viscosity oil and high flowrate. However, sand compaction at the injection face of the cores was more significant than sand production. In addition, high confining pressure contributes to additional sand production. The average critical velocity was estimated ranged from 18 to 257 ft/day for the 0.74 cp oil, 2 to 121 ft/day for the 16 cp oil, and 1 to 26 ft/day for the 684 cp oil.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3